Add like
Add dislike
Add to saved papers

Biomechanical testing of suture-based meniscal repair devices containing ultrahigh-molecular-weight polyethylene suture: update 2011.

Arthroscopy 2012 June
PURPOSE: To evaluate the biomechanical characteristics of recently introduced ultrahigh-molecular-weight polyethylene suture-based, self-adjusting meniscal repair devices.

METHODS: Updating a prior study published in 2009, we made vertical longitudinal cuts 3 mm from the periphery in fresh-frozen adult human menisci to simulate a bucket-handle meniscus tear. Each tear was then repaired by a single repair technique in 10 meniscus specimens. Group 1 menisci were repaired with a vertical mattress suture of No. 2-0 Ethibond (Ethicon, Somerville, NJ). Group 2 menisci were repaired with a vertical mattress suture of No. 2-0 OrthoCord (DePuy Mitek, Raynham, MA). Group 3 menisci were repaired with a single OmniSpan device with No. 2-0 OrthoCord suture (DePuy Mitek). Group 4 menisci were repaired with a single Meniscal Cinch device with No. 2-0 FiberWire suture (Arthrex, Naples, FL). Group 5 menisci were repaired with a single MaxFire device inserted with the MarXmen gun (Biomet Sports Medicine, Warsaw, IN). Group 6 menisci were repaired with a Sequent device with No. 0 Hi-Fi suture (ConMed Linvatec, Largo, FL) in a "V" suture configuration. Group 7 menisci were repaired with a single FasT-Fix 360 device (Smith & Nephew Endoscopy, Andover, MA). By use of a mechanical testing machine, all samples were preloaded at 5 N and cycled 200 times between 5 and 50 N. Those specimens that survived were destructively tested at 5 mm/min. Endpoints included maximum load, displacement, stiffness, and failure mode.

RESULTS: Mean failure loads were as follows: Ethibond suture, 73 N; OrthoCord suture, 88 N; OmniSpan, 88 N; Cinch, 71 N; MarXmen/MaxFire, 54 N; Sequent, 66 N; and FasT-Fix 360, 60 N. Ethibond was stronger than MarXmen/MaxFire. The mean displacement after 100 cycles was as follows: Ethibond, 2.58 mm; OrthoCord, 2.75 mm; OmniSpan, 2.51 mm; Cinch, 2.65 mm; MarXmen/MaxFire, 3.67 mm; Sequent, 3.35 mm; and FasT-Fix 360, 1.13 mm. The MarXmen/MaxFire showed greater 100-cycle displacement than Ethibond and FasT-Fix 360. No difference in stiffness existed for these devices, and failure mode varied without specific trends.

CONCLUSIONS: The biomechanical properties of meniscal repairs using the OmniSpan, Cinch, Sequent, and FasT-Fix 360 devices are equivalent to suture repair techniques. However, the MarXmen/MaxFire meniscal repair device showed significantly lower failure loads and survived less cyclic loading in the human cadaveric meniscus than other tested repairs.

CLINICAL RELEVANCE: Most commercially available devices for all-inside meniscal repair using ultrahigh-molecular-weight polyethylene suture provide fixation comparable to the classic vertical mattress suture repair technique in human cadaveric meniscus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app