Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Confirmation of K-momentum dark exciton vibronic sidebands using 13C-labeled, highly enriched (6,5) single-walled carbon nanotubes.

Nano Letters 2012 March 15
A detailed knowledge of the manifold of both bright and dark excitons in single-walled carbon nanotubes (SWCNTs) is critical to understanding radiative and nonradiative recombination processes. Exciton-phonon coupling opens up additional absorption and emission channels, some of which may "brighten" the sidebands of optically forbidden (dark) excitonic transitions in optical spectra. In this report, we compare (12)C and (13)C-labeled SWCNTs that are highly enriched in the (6,5) species to identify both absorptive and emissive vibronic transitions. We find two vibronic sidebands near the bright (1)E(11) singlet exciton, one absorptive sideband ~200 meV above, and one emissive sideband ~140 meV below, the bright singlet exciton. Both sidebands demonstrate a ~50 cm(-1) isotope-induced shift, which is commensurate with exciton-phonon coupling involving phonons of A[Formula: see text] symmetry (D band, ω ~ 1330 cm(-1)). Independent analysis of each sideband indicates that both sidebands arise from the same dark exciton level, which lies at an energy approximately 25 meV above the bright singlet exciton. Our observations support the recent prediction of, and mounting experimental evidence for, the dark K-momentum singlet exciton lying ~25 meV (for the (6,5) SWCNT) above the bright Γ-momentum singlet. This study represents the first use of (13)C-labeled SWCNTs highly enriched in a single nanotube species to unequivocally confirm these sidebands as vibronic sidebands of the dark K-momentum singlet exciton.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app