Isolation, molecular characterization, and functional analysis of the vacuolar Na+/H+ antiporter genes from the halophyte Karelinia caspica

Lin Liu, Youling Zeng, Xinyan Pan, Fuchun Zhang
Molecular Biology Reports 2012, 39 (6): 7193-202
The full-length cDNAs of two Karelinia caspica genes, KcNHX1 and KcNHX2, were isolated by RACE and RT-PCR based on the conserved regions of Na(+)/H(+) antiporter (NHX) genes from other halophyte species. The cloned KcNHX1 cDNA contained 2,022 nucleotides with an open reading frame (ORF) of 1,620 bp and the KcNHX2 cDNA contained 1,976 nucleotides with an ORF of 1,653 bp. The deduced amino acid sequences indicated that both genes were homologous to NHXs from other higher plants. To investigate the possible roles of KcNHX1 and KcNHX2 in the salt stress response of K. caspica and the underlying regulatory mechanisms, RNAi vectors were constructed and transformed into K. caspica to specifically silence endogenous KcNHX1 and KcNHX2. The physiological results showed that silencing KcNHX1 in K. caspica led to reduced salt tolerance in high concentrations of NaCl, suggesting that KcNHX1 plays an essential role in the response of K. caspica to salt stress. However, the inhibition of KcNHX2 seemed to have little influence on the salt resistance of transgenic plants, indicating that KcNHX2 may be relevant for functions other than salt tolerance in K. caspica.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"