Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Stanniocalcin 2 is associated with ectopic calcification in α-klotho mutant mice and inhibits hyperphosphatemia-induced calcification in aortic vascular smooth muscle cells.

Bone 2012 April
Ectopic calcification of soft tissues can have severe clinical consequences especially when localized to vital organs such as heart, arteries and kidneys. Mammalian stanniocalcin (STC) 1 and 2 are glycoprotein hormones identified as calcium/phosphate-regulating hormones. The mRNA of STCs is upregulated in the kidney of α-klotho mutant (kl/kl) mice, which have hypercalcemia, hyperphosphatemia and hypervitaminosis D and exhibit a short life span, osteopenia and ectopic calcification. In the present study, we investigated the distribution and localization of STCs in kl/kl mice. Quantitative RT-PCR revealed that renal mRNA expression of STC2 was increased in both kl/kl mice and fibroblast growth factor 23 (Fgf23)-null mice compared with wild type mice. Interestingly, STC2 protein was focally localized with the calcified lesions of renal arterioles, renal tubular cells, heart and aorta in kl/kl mice. In vitro analysis of rat aortic vascular smooth muscle (A-10) cells showed that inorganic phosphate (Pi) stimulation significantly increased STC2 mRNA levels as well as that of osteocalcin, osteopontin and the type III sodium-dependent phosphate co-transporter (PiT-1), and induced STC2 secretion. Interestingly, the knockdown with a small interfering RNA or the over-expression of STC2 showed acceleration and inhibition of Pi-induced calcification in A-10 cells, respectively. These results suggest that the up-regulation of STC2 gene expression resulting from abnormal α-klotho-Fgf23 signaling may contribute to limitation of ectopic calcification and thus STC2 represents a novel target gene for cardio-renal syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app