JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ethylene-responsive miRNAs in roots of Medicago truncatula identified by high-throughput sequencing at whole genome level.

Ethylene is one of the classical plant hormones with a diverse function in plant growth and development. Root elongation is sensitive to ethylene such that treatments with ethylene and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) inhibit root growth. MicroRNA as one type of endogenous, non-coding small RNAs, plays an important role in regulation of plant growth, development and hormonal signaling by affecting expression of target genes. However, there has been no detailed study to evaluate the role of microRNAs in mediation of ethylene-dependent physiological processes in plants. Medicago truncatula is a model plant widely used for investigation of molecular biology in legume species. In this study, we constructed two small RNA libraries from roots of M. truncatula treated with and without ACC. High-throughput sequencing was employed to sequence the small RNA libraries, and more than 30 M raw reads were obtained. We annotated 301 known miRNAs and identified 3 new miRNAs in the two libraries. Treatment of M. truncatula with 10 μM ACC led to changes in expression of 8 miRNAs. The targets of the ethylene-responsive miRNAs were predicted by bioinformatic approach. The potential role of the ethylene-responsive miRNAs in the ethylene-induced inhibition of root elongation is discussed. These results are useful for functional characterization of miRNAs in mediation of ethylene-dependent physiological processes in general and root elongation in particular.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app