Journal Article
Research Support, Non-U.S. Gov't
Retracted Publication
Add like
Add dislike
Add to saved papers

Multiple inflammatory pathways are involved in the development and progression of cognitive deficits in APPswe/PS1dE9 mice.

Neurobiology of Aging 2012 November
Increased accumulation of amyloid-beta peptide (Aβ) and neuroinflammation is known to exist within the Alzheimer's disease (AD) brain. However, it remains unclear which form of Aβ pathologies triggers neuroinflammation and whether increased neuroinflammation contributes to cognitive deficits in AD. In the present study we found that increased inflammatory responses might occur early in preplaque APPswe/PS1dE9 mice, and were significantly enhanced in both early- and late-plaque APPswe/PS1dE9 mice. Correlational analysis revealed that multiple inflammatory indexes significantly correlated with soluble Aβ level, rather than amyloid plaque burden or insoluble Aβ level, in APPswe/PS1dE9 mice. Moreover, multiple inflammatory indexes highly correlated with the impaired spatial learning and memory in APPswe/PS1dE9 mice. Collectively, these results provide evidence that inflammatory responses might be likely triggered by soluble toxic Aβ species. Importantly, we demonstrate for the first time that multiple inflammatory pathways might be involved in the development and progression of cognitive deficits in APPswe/PS1dE9 mice, suggesting that a pharmacological approach targeting multiple inflammatory pathways may be a novel promising strategy to prevent or delay AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app