Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle.

The aim of the present study was to test the hypothesis that acute high-intensity interval (HIT) running induces greater activation of signaling pathways associated with mitochondrial biogenesis compared with moderate-intensity continuous (CONT) running matched for work done. In a repeated-measures design, 10 active men performed two running protocols consisting of HIT [6 × 3-min at 90% maximal oxygen consumption (Vo(2max)) interspersed with 3-min recovery periods at 50% Vo(2max) with a 7-min warm-up and cool-down period at 70% Vo(2max)] or CONT (50-min continuous running at 70% Vo(2max)). Both protocols were matched, therefore, for average intensity, duration, and distance run. Muscle biopsies (vastus lateralis) were obtained preexercise, postexercise, and 3 h postexercise. Muscle glycogen decreased (P < 0.05) similarly in HIT and CONT (116 ± 11 vs. 111 ± 17 mmol/kg dry wt, respectively). Phosphorylation (P-) of p38MAPK(Thr180/Tyr182) (1.9 ± 0.1- vs. 1.5 ± 0.2-fold) and AMPK(Thr172) (1.5 ± 0.3- vs. 1.5 ± 0.1-fold) increased immediately postexercise (P < 0.05) in HIT and CONT, respectively, and returned to basal levels at 3 h postexercise. P-p53(Ser15) (HIT, 2.7 ± 0.8-fold; CONT, 2.1 ± 0.8-fold), PGC-1α mRNA (HIT, 4.2 ± 1.7-fold; CONT, 4.5 ± 0.9-fold) and HSP72 mRNA (HIT, 4.4 ± 2-fold; CONT, 3.5 ± 1-fold) all increased 3 h postexercise (P < 0.05) although neither parameter increased (P > 0.05) immediately postexercise. There was no difference between trials for any of the above signaling or gene expression responses (P > 0.05). We provide novel data by demonstrating that acute HIT and CONT running (when matched for average intensity, duration, and work done) induces similar activation of molecular signaling pathways associated with regulation of mitochondrial biogenesis. Furthermore, this is the first report of contraction-induced p53 phosphorylation in human skeletal muscle, thus highlighting an additional pathway by which exercise may initiate mitochondrial biogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app