JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Pro-apoptotic activity of BH3-only proteins and BH3 mimetics: from theory to potential cancer therapy.

The evasion of cancer cells from the induction of cell death pathways results in the resistance of tumor to current treatment modalities. Therefore, the resistance to cell death, one of the hallmarks of cancer, is a major target in the development of new approaches to selectively affect cancer cells. The complex interplay between individual members of Bcl-2 family regulates both cell survival and the mitochondrial pathway of apoptosis by maintaining mitochondrial membrane integrity (anti-apoptotic Bcl-2 subfamily) and by triggering its disruption in response to stress stimuli (Bax-like subfamily). BH3-only proteins, another Bcl-2 subfamily, act either by direct stimulation of pro-apoptotic proteins of the Bax subfamily or by interfering with anti-apoptotic proteins of the Bcl-2 subfamily. Thus, pro-apoptotic BH3 mimetics, thought to function as BH3-only proteins, are expected to improve the effectiveness of cancer treatment. BH3 mimetics could be either natural or synthetic, peptidic or only based on a helical peptide-like scaffold. Experimental and clinical evidence indicates that BH3 mimetics may not be sufficient to cure cancer patients when used as a single agent. BH3 profiling of cancer cells was introduced to better predict the in vivo responsiveness of tumor to BH3 mimetics combined with conventional therapies. In summary, targeting the Bcl-2 proteins is a promising tool with potential to generate new treatment modalities and to complement existing anti-cancer therapies. This review presents the current knowledge on BH3-only proteins and the spectrum of strategies employing BH3 mimetics in preclinical and clinical studies that aim at tumor targeting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app