Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Effect of operating parameters on desulphurization of mine tailings by froth flotation.

A site-specific study is carried out to assess the suitability of froth flotation for desulphurization of reactive mine tailings at the Musselwhite Mine, Northern Ontario, Canada, to prevent acid mine drainage (AMD). The results from pilot scale flotation tests on an Outokumpu flotation unit are presented, which confirm that froth flotation is effective to reduce sulphide contents of tailings. The factors affecting the treatment effectiveness, such as the froth depth, air flow rate, pulp density and impeller speed are studied. The sulphur recoveries after 0.25, 0.5, 1, 2, 5, and 12 min of flotation time are fitted to a second-order kinetic model. It is found that the second order rate constant, k(2) is negatively correlated with the froth depth and positively correlated with the air flow rate. Based on the data presented in this study; the maximum recovery of total sulphur was achieved when the operational parameters were set to the froth depth of 5 cm, air flow rate 125 L/min, impeller speed 1300 rpm and pulp density 35%.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app