JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ethanol increases phosphate-mediated mineralization and osteoblastic transformation of vascular smooth muscle cells.

Vascular calcification is implicated in the pathogenesis of atherosclerosis, diabetes and chronic kidney disease. Human vascular smooth muscle cells (HSMCs) undergo mineralization in response to elevated levels of inorganic phosphate (Pi) in an active and well-regulated process. This process involves increased activity of alkaline phosphatase and increased expression of core binding factor α-1 (CBF-α1), a bone-specific transcription factor, with the subsequent induction of osteocalcin. It has been shown that heavy alcohol consumption is associated with greater calcification in coronary arteries. The goal of our study was to examine whether ethanol alters mineralization of HSMCs provoked by high Pi. Exposure of HSMCs to ethanol increased extracellular matrix calcification in a dose responsive manner, providing a significant additional calcium deposition at concentrations of ≥60 mmol/l. HSMC calcification was accompanied by further enhancement in alkaline phosphatase activity. Ethanol also provoked a significant increase in the synthesis of osteocalcin. Moreover, in cells challenged with ethanol the expression of CBF-α1, a transcription factor involved in the regulation of osteoblastic transformation of HSMCs, was elevated. The observed effects of ethanol were not due to alterations of phosphate uptake by HSMCs. We conclude that ethanol enhances Pi-mediated human vascular smooth muscle calcification and transition of these cells into osteoblast-like cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app