JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst.

Highly ordered mesoporous platinum@graphitic carbon (Pt@GC) composites with well-graphitized carbon frameworks and uniformly dispersed Pt nanoparticles embedded within the carbon pore walls have been rationally designed and synthesized. In this facile method, ordered mesoporous silica impregnated with a variable amount of Pt precursor is adopted as the hard template, followed by carbon deposition through a chemical vapor deposition (CVD) process with methane as a carbon precursor. During the CVD process, in situ reduction of Pt precursor, deposition of carbon, and graphitization can be integrated into a single step. The mesostructure, porosity and Pt content in the final mesoporous Pt@GC composites can be conveniently adjusted over a wide range by controlling the initial loading amount of Pt precursor and the CVD temperature and duration. The integration of high surface area, regular mesopores, graphitic nature of the carbon walls as well as highly dispersed and spatially embedded Pt nanoparticles in the mesoporous Pt@GC composites make them excellent as highly active, extremely stable, and methanol-tolerant electrocatalysts toward the oxygen reduction reaction (ORR). A systematic study by comparing the ORR performance among several carbon supported Pt electrocatalysts suggests the overwhelmingly better performance of the mesoporous Pt@GC composites. The structural, textural, and framework properties of the mesoporous Pt@GC composites are extensively studied and strongly related to their excellent ORR performance. These materials are highly promising for fuel cell applications and the synthesis method is quite applicable for constructing mesoporous graphitized carbon materials with various embedded nanophases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app