JOURNAL ARTICLE

A quantitative study to design an experimental setup for photoacoustic imaging

Adrien Marion, Jérôme Boutet, Mathieu Debourdeau, Jean-Marc Dinten, Didier Vray
Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2011, 2011: 7211-4
22256002
During the last decade, a new modality called photoacoustic imaging has emerged. The increasing interest for this new modality is due to the fact that it combines advantages of ultrasound and optical imaging, i.e. the high contrast due to optical absorption and the low acoustic attenuation in biological tissues. It is thus possible to study vascularization because blood has high optical absorption coefficient. Papers in the literature often focus on applications and rarely discuss quantitative parameters. The goal of this paper is to provide quantitative elements to design an acquisition setup. By defining the targeted resolution and penetration depth, it is then possible to evaluate which kind of excitation and reception systems have to be used. First, we recall theoretical background related to photoacoustic effect before to describe the experiments based on a nanosecond laser at 1064 nm and 2.25-5 MHz transducers. Second, we present results about the relation linking fluence laser to signal amplitude and axial and lateral resolutions of our acquisition setup. We verify the linear relation between fluence and amplitude before to estimate axial resolution at 550 μm for a 2.25 MHz ultrasonic transducer. Concerning lateral resolution, we show that a reconstruction technique based on curvilinear acquisition of 30 lines improves it by a factor of 3 compared to a lateral displacement. Future works will include improvement of lateral resolution using probes, like in ultrasound imaging, instead of single-element transducers.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22256002
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"