JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Body-worn sensor based surrogates of minimum ground clearance in elderly fallers and controls.

Falls in the elderly are a major problem worldwide with enormous associated economic and societal costs. Minimum ground clearance (MGC) is an important gait variable when considering trip-related falls risk. This study aimed to investigate the clinical relevance of inertial sensor derived parameters, previously shown to be related to MGC. Previous research by the authors reported a surrogate method for assessing minimum ground clearance (MGC) using shank-mounted inertial sensors in young controls. The present study tests this method on a cohort of 114 community dwelling elderly adults, with and without a history of falls, completing a 30 m continuous walk. Parameters based on the shank angular velocity signals that were shown to be associated with MGC showed significant differences (p<0.05) between fallers and non-fallers yet did not correlate strongly (r<0.7) with two standard measures of falls risk (TUG & BBS). Weak correlations were observed between the angular velocity derived parameters and gait velocity. We conclude that these parameters are clinically meaningful and therefore may constitute a new measure of falls risk.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app