Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A concurrent comparison of inertia sensor-based walking speed estimation methods.

This study performed a concurrent comparison of two walking speed estimation methods using shank- and foot-mounted inertial measurement units (IMUs). Based on the cyclic gait pattern of the stance leg during walking, data was segmented into a series of individual stride cycles. The angular velocity and linear accelerations of the shank and foot over each of these cycles were then integrated to determine the walking speed. The evaluation was performed on 10 healthy subjects during treadmill walking where known treadmill speeds were compared with the estimated walking speeds under normal and toe-out walking conditions. Results from the shank-mounted IMU sensor yielded more accurate walking speed estimates, with a maximum root mean square estimation error (RMSE) of 0.09 m/s in normal walking and 0.10 m/s in toe-out conditions; while the foot-mounted IMU sensors yielded a maximum RMSE of 0.14 m/s in normal walking and 0.26 m/s in toe-out conditions. Shank-mounted IMU sensors may prove to be of great benefit in accurately estimating walking speeds in patients whose gait is characterized by abnormal foot motions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app