Add like
Add dislike
Add to saved papers

Genome-wide ChIP-seq mapping and analysis reveal butyrate-induced acetylation of H3K9 and H3K27 correlated with transcription activity in bovine cells.

Butyrate-induced histone acetylation plays an important role in the regulation of gene expression. However, the regulation mechanisms of histone modification remain largely unclear. To comprehensively analyze histone modification induced by butyrate, we utilized chromatin immunoprecipitation (ChIP) technology combined with next-generation sequencing technology (ChIP-seq) to analyze histone modification (acetylation) induced by butyrate and to map the epigenomic landscape of normal histone H3 and acetylated histone H3K9 and H3K27 on a large scale. To determine the location of histone H3, acetyl-H3K9, and acetyl-H3K27 binding sites within the bovine genome, we analyzed the H3-, acetyl-H3K9-, and acetyl-H3K27-enriched binding regions in the proximal promoter within 5 kb upstream, or at the 5' untranslated region (UTR) from the transcriptional start site (TSS), exon, intron, and intergenic regions (defined as regions 25 kb upstream or 10 kb downstream from the TSS). Our analysis indicated that the distribution of histone H3, acetyl-H3K9, and acetyl-H3K27 correlated with transcription activity induced by butyrate. Using the GADEM algorithm, several motifs were generated for each of the ChIP-seq datasets. A de novo search for H3, acetyl-H3K9, and acetyl-H3K27 binding motifs indicated that histone modification (acetylation) at various locations changes the histone H3 binding preferences. Our results reveal that butyrate-induced acetylation in H3K9 and H3K27 changes the sequence-based binding preference of histone H3 and underlies the potential mechanisms of gene expression regulation induced by butyrate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app