Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Isolation and molecular characterisation of flavonoid 3'-hydroxylase and flavonoid 3', 5'-hydroxylase genes from a traditional Chinese medicinal plant, Epimedium sagittatum.

Gene 2012 April 11
The epimedii herb, a traditional Chinese medicinal plant, has significant pharmacological effects on human health. The bioactive components in the herb (Epimedium sagittatum (Sieb. et Zucc.) Maxim) are mainly prenylated flavonol glycosides, which are end-products of the flavonoid biosynthetic pathway. This has not been clearly elucidated until recently. The genes encoding flavonoid 3'-hydroxylase (F3'H) and flavonoid 3', 5'-hydroxylase (F3'5'H) involved in the flavonoid biosynthetic pathway, designated as EsF3'H and EsF3'5'H, were isolated from E. sagittatum using a homology-based cloning method and deposited in the GenBank databases (GenBank ID: HM011054 and HM011055), respectively. EsF3'H and EsF3'5'H proteins shared high homology with other plant-specific flavonoid hydroxylases and were clustered into the CYP75B and CYP75A group, respectively. In addition, four conserved cytochrome P450-featured motifs were found in the amino acid sequences of both genes. Transcription levels of both genes were detected in all tissues tested and were high in most of the pigmented tissues. Moreover, the expression levels of both EsF3'H and EsF3'5'H correlated positively with the anthocyanin accumulation pattern in leaves from E. sagittatum. The cloning and molecular characterisation of EsF3'H and EsF3'5'H genes will accelerate progress in the study of the flavonoid biosynthetic pathway to elucidate the molecular mechanisms of the biosynthesis of the bioactive components in E. sagittatum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app