JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Modeling shear modulus distribution in magnetic resonance elastography with piecewise constant level sets.

Magnetic resonance elastography (MRE) is designed for imaging the mechanical properties of soft tissues. However, the interpretation of shear modulus distribution is often confusing and cumbersome. For reliable evaluation, a common practice is to specify the regions of interest and consider regional elasticity. Such an experience-dependent protocol is susceptible to intrapersonal and interpersonal variability. In this study we propose to remodel shear modulus distribution with piecewise constant level sets by referring to the corresponding magnitude image. Optimal segmentation and registration are achieved by a new hybrid level set model comprised of alternating global and local region competitions. Experimental results on the simulated MRE data sets show that the mean error of elasticity reconstruction is 11.33% for local frequency estimation and 18.87% for algebraic inversion of differential equation. Piecewise constant level set modeling is effective to improve the quality of shear modulus distribution, and facilitates MRE analysis and interpretation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app