COMPARATIVE STUDY
JOURNAL ARTICLE

Aspirin prevents resistin-induced endothelial dysfunction by modulating AMPK, ROS, and Akt/eNOS signaling

Hsiu-Chung Ou, Wen-Jane Lee, Ching-Mei Wu, Judy Fuh-Meei Chen, Wayne Huey-Herng Sheu
Journal of Vascular Surgery 2012, 55 (4): 1104-15
22244860

BACKGROUND: Resistin, an adipocytokine, plays a potential role in cardiovascular disease and may contribute to increased atherosclerotic risk by modulating the activity of endothelial cells. A growing body of evidence suggests that aspirin is a potent antioxidant. We investigated whether aspirin mitigates resistin-induced endothelial dysfunction via modulation of reactive oxygen species (ROS) generation and explored the role that AMP-activated protein kinase (AMPK), a negative regulator of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, plays in the suppressive effects of aspirin on resistin-induced endothelial dysfunction.

METHODS: Human umbilical vein endothelial cells (HUVECs) were pretreated with various doses of aspirin (10-500 μg/mL) for 2 hours and then incubated with resistin (100 ng/mL) for an additional 48 hours. Fluorescence produced by the oxidation of dihydroethidium (DHE) was used to quantify the production of superoxide in situ; superoxide dismutase (SOD) and catalase activities were determined by an enzymatic assay; and protein levels of AMPK-mediated downstream signaling were investigated by Western blot.

RESULTS: Treatment of HUVECs with resistin for 48 hours resulted in a 2.9-fold increase in superoxide production; however, pretreatment with aspirin resulted in a dose-dependent decrease in production of superoxide (10-500 μg/mL; n = 3 experiments; all P < .05). Resistin also suppressed the activity of superoxide dismutase and catalase by nearly 50%; that result, however, was not observed in HUVECs that had been pretreated with aspirin at a concentration of 500 μg/mL. The membrane translocation assay showed that the levels of NADPH oxidase subunits p47(phox)and Rac-1 in membrane fractions of HUVECs were threefold to fourfold higher in cells that had been treated with resistin for 1 hour than in untreated cells; however, pretreatment with aspirin markedly inhibited resistin-induced membrane assembly of NADPH oxidase via modulating AMPK-suppressed PKC-α activation. Application of AMPKα1-specific siRNA resulted in increased activation of PKC-α and p47(phox). In addition, resistin significantly decreased AMPK-mediated downstream Akt/endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling and induced the phosphorylation of p38 mitogen-activated protein kinases, which in turn activated NF-κB-mediated inflammatory responses such as the release of interleukin (IL)-6 and IL-8, the overexpression of adhesion molecules, and stimulation of monocytic THP-1 cell attachment to HUVECs (2.5-fold vs control; n = 3 experiments). Furthermore, resistin downregulated eNOS and upregulated inducible NO synthase (iNOS) expression, thereby augmenting the formation of NO and protein nitrosylation. Pretreatment with aspirin, however, exerted significant cytoprotective effects in a dose-dependent manner (P < .05).

CONCLUSIONS: Our findings suggest a direct connection between adipocytokines and endothelial dysfunction and provide further insight into the protective effects of aspirin in obese individuals with endothelial dysfunction.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22244860
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"