EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Design and simulation of a new powered gait orthosis for paraplegic patients.

BACKGROUND AND AIM: This article describes the development and testing of a new powered gait orthosis to potentially assist spinal cord injury patients to walk by producing synchronized hip and knee joint movements.

TECHNIQUE: The first evaluation of the orthosis was performed without users, and was followed by evaluation of the orthosis performance using three healthy subjects to test the structure under weight-bearing conditions. The orthosis was primarily evaluated to ascertain its ability to generate appropriate hip and knee motion during walking. The walking experiments replicated the flexion and extension of both the hip and knee produced by the actuators which had previously been demonstrated during the initial computer simulations.

DISCUSSION: The results suggest that this new orthosis could be used to assist paraplegic subjects who have adequate ranges of motion and also with weakness or reduced tone to ambulate, and may also be suitable for other subjects with impaired lower limb function (e.g. stroke, poliomyelitis, myelomeningocele and traumatic brain injury provided they do not have increased tone or movement disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app