Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Involvement of microglia and interleukin-18 in the induction of long-term potentiation of spinal nociceptive responses induced by tetanic sciatic stimulation.

Neuroscience Bulletin 2012 Februrary
OBJECTIVE: The present study aimed to investigate the potential roles of spinal microglia and downstream molecules in the induction of spinal long-term potentiation (LTP) and mechanical allodynia by tetanic stimulation of the sciatic nerve (TSS).

METHODS: Spinal LTP was induced in adult male Sprague-Dawley rats by tetanic stimulation of the sciatic nerve (0.5 ms, 100 Hz, 40 V, 10 trains of 2-s duration at 10-s intervals). Mechanical allodynia was determined using von Frey hairs. Immunohistochemical staining and Western blot were used to detect changes in glial expression of interleukin-18 (IL-18) and IL-18 receptor (IL-18R).

RESULTS: TSS induced LTP of C-fiber-evoked field potentials in the spinal cord. Intrathecal administration of the microglial inhibitor minocycline (200 μg/20 μL) 1 h before TSS completely blocked the induction of spinal LTP. Furthermore, after intrathecal injection of minocycline (200 μg/20 μL) by lumbar puncture 1 h before TSS, administration of minocycline for 7 consecutive days (once per day) partly inhibited bilateral allodynia. Immunohistochemistry showed that minocycline inhibited the sequential activation of microglia and astrocytes, and IL-18 was predominantly colocalized with the microglial marker Iba-1 in the spinal superficial dorsal horn. Western blot revealed that repeated intrathecal injection of minocycline significantly inhibited the increased expression of IL-18 and IL-18Rs in microglia induced by TSS.

CONCLUSION: The IL-18 signaling pathway in microglia is involved in TSS-induced spinal LTP and mechanical allodynia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app