Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Long-term persistence of CD4(+) but rapid disappearance of CD8(+) T cells expressing an MHC class I-restricted TCR of nanomolar affinity.

Most T cells have T cell receptors (TCR) of micromolar affinity for peptide-major histocompatibility complex (MHC) ligands, but genetic engineering can generate TCRs of nanomolar affinity. The affinity of the TCR used, m33, for its cognate non-self peptide-MHC-I complex (SIYRYYGL-K(b)) is 1,000-fold higher than of the wild-type TCR 2C. The affinity of m33 for the self-peptide dEV-8 on K(b) is only twofold higher. Mouse CD8(+) T cells transduced with an m33-encoding retrovirus showed binding of SIY-K(b) and potent function in vitro, but in vivo these T cells disappeared within hours after transfer into syngeneic hosts without causing graft-versus-host disease (GVHD). Accordingly, in cases where such CD8-dependent self-reactivity might occur in human adoptive T cell therapies, our results show that a peripheral T-cell deletion mechanism could operate to avoid reactions with the host. In contrast to CD8(+) T cells, we show that CD4(+) T cells expressing m33 survived for months in vivo. Furthermore, the m33-transduced CD4(+) T cells were able to mediate antigen-specific rejection of 6-day-old tumors. Together, we show that CD8(+) T cell expressing a MHC class I-restricted high-affinity TCR were rapidly deleted whereas CD4(+) T cells expressing the same TCR survived and provided function while being directed against a class I-restricted antigen.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app