Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of T-type Ca²⁺ channels by endostatin attenuates human glioblastoma cell proliferation and migration.

BACKGROUND AND PURPOSE: Endostatin (ES) is a c-terminal proteolytic fragment of collagen XVIII with promising antitumour properties in several tumour models, including human glioblastoma. We hypothesized that this peptide could interact with plasma membrane ion channels and modulate their functions.

EXPERIMENTAL APPROACH: Using cell proliferation and migration assays, patch clamp and Western blot analysis, we studied the effects of ES on the proliferation and migration of human glioblastoma U87 cells, mediated by T-type Ca²⁺ channels.

KEY RESULTS: Extracellular application of ES reversibly inhibited T-type Ca²⁺ channel currents (T-currents) in U87 cells, whereas L-type Ca²⁺ currents were not affected. This inhibitory effect was associated with a hyperpolarizing shift in the voltage-dependence of inactivation but was independent of G-protein and protein tyrosine kinase-mediated pathways. All three α₁ subunits of T-type Ca²⁺ channels (Ca(V) 3), α(1G) (Ca(V) 3.1), α(1H) (Ca(V) 3.2) and α(1I) (Ca(V) 3.3), were endogenously expressed in U87 cells. Using transfected HEK293 or CHO cells, we showed that only Ca(V) 3.1 and Ca(V) 3.2, but not Ca(V) 3.3 or Ca(V) 1.2 (L-type), channel currents were significantly inhibited. More interestingly, ES inhibited the proliferation and migration of U87 cells in a dose-dependent manner. Pretreatment of the cells with the specific T-type Ca²⁺ channel blocker mibefradil occluded these inhibitory effects of ES.

CONCLUSION AND IMPLICATIONS: This study provides the first evidence that the antitumour effects of ES on glioblastoma cells is through direct inhibition of T-type Ca²⁺ channels and gives new insights into the future development of a new class of antiglioblastoma agents that target the proliferation and migration of these cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app