JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High-efficiency inverted polymer solar cells with double interlayer.

We have studied the performance of normal and inverted bulk-heterojunction solar cells with an active layer composed of a blend of poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (PDTS-BTD) and {6,6}-phenyl-C71 butyric acid methyl ester (PC(71)BM). For inverted cells, a thin layer of ZnO nanoparticles and MoO(3) were used as interlayers for the bottom cathode and the top anode respectively. To enhance the device performance, a thin film of 4,4',4″-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine (MTDATA) was used along with MoO(3) as an anode interlayer to improve the hole extraction from the photoactive layer to the anode. The inverted polymer solar cells with double interlayer exhibit a higher power conversion efficiency of 6.45% compared to the conventional cell of 4.91% due to efficient charge extraction and favorable vertical morphology of active layer blend. Our ultraviolet photoemission spectroscopy results indicate that the formation of band bending due to interlayer leads to the enhancement in hole extraction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app