JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Hydrogen sulfide-releasing aspirin suppresses NF-κB signaling in estrogen receptor negative breast cancer cells in vitro and in vivo.

Hormone-dependent estrogen receptor positive (ER+) breast cancers generally respond well to anti-estrogen therapy. Unfortunately, hormone-independent estrogen receptor negative (ER-) breast cancers are aggressive, respond poorly to current treatments and have a poor prognosis. New approaches and targets are needed for the prevention and treatment of ER- breast cancer. The NF-κB signaling pathway is strongly implicated in ER- tumor genesis, constituting a possible target for treatment. Hydrogen sulfide-releasing aspirin (HS-ASA), a novel and safer derivative of aspirin, has shown promise as an anti-cancer agent. We examined the growth inhibitory effect of HS-ASA via alterations in cell proliferation, cell cycle phase transitions, and apoptosis, using MDA-MB-231 cells as a model of triple negative breast cancer. Tumor xenografts in mice, representing human ER- breast cancer, were evaluated for reduction in tumor size, followed by immunohistochemical analysis for proliferation, apoptosis and expression of NF-κB. HS-ASA suppressed the growth of MDA-MB-231 cells by induction of G(0)/G(1) arrest and apoptosis, down-regulation of NF-κB, reduction of thioredoxin reductase activity, and increased levels reactive oxygen species. Tumor xenografts in mice, were significantly reduced in volume and mass by HS-ASA treatment. The decrease in tumor mass was associated with inhibition of cell proliferation, induction of apoptosis and decrease in NF-κB levels in vivo. HS-ASA has anti-cancer potential against ER- breast cancer and merits further study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app