JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Interferon-γ-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway.

Immunobiology 2012 April
Many cells located in the tumor microenvironment function to protect or promote the ability of tumor cells to escape immune destruction. Previous studies have shown that programmed death ligand-1 (PD-L1), a ligand of the B7 superfamily, is expressed on a series of human tumors and can inhibit anti-tumor immune responses. Interferon-γ (IFN-γ), a cytokine produced and secreted by inflammatory cells in the tumor microenvironment, is a main stimulator of PD-L1 expression in tumor cells. Making clear the mechanism of IFN-γ induced the expression of PD-L1 on tumor cells that is benefit to find a way to inhibit the function of PD-L1 and improve cancer cell-reactive immune responses. Herein, we have identified protein kinase D isoform 2 (PKD2) as an important regulator of PD-L1 expression on human oral squamous carcinoma cells induced by IFN-γ. IFN-γ induced the expression of PD-L1 and PKD2 in human oral squamous carcinoma Tca8113 in both time and dose dependent manner. The expression of PD-L1 was decreased significantly after PKD2 knockdown with shRNA/siRNA interference or PKD chemical inhibitor following induction with IFN-γ. The apoptosis of CD8(+) T cell which is induced by tumor cells via PD-1/PD-L1 pathway was significantly decreased, as a result, the anti-tumor effects of tumor antigen specific T cell were increased in vivo. Together, these data combined with our previous results, indicate PKD2 as an important target candidate for tumor biotherapy. Inhibition of PKD2 activation not only inhibits PD-L1 expression and promotes an anti-tumor effect, but also decreases drug resistance in chemotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app