JOURNAL ARTICLE

A study of the suppressive effect on human pancreatic adenocarcinoma cell proliferation and angiogenesis by stable plasmid-based siRNA silencing of c-Src gene expression

Xin Zhao, De-Chun Li, Hua Zhao, Zhi Li, Jian-Xin Wang, Dong-Ming Zhu, Jin Zhou, Jian-Nong Cen
Oncology Reports 2012, 27 (3): 628-36
22200682
The non-receptor protein tyrosine kinase c-Src regulates diverse biological processes by associating with multiple signaling and structural molecules. Overexpression of c-Src occurs in pancreatic cancer and can be predictive of poor prognosis. The aim of this study was to investigate the inhibitory effects of plasmid-based siRNAs targeting the human c-Src gene on proliferation and angiogenesis in the human pancreatic adenocarcinoma cell line Panc-1. Three siRNAs targeting the c-Src gene were transfected into the Panc-1 pancreatic adenocarcinoma cell line mediated by Lipofectamine. Transfection efficiency was assessed by flow cytometry. Real-time quantitative PCR (RQ-PCR) was employed to detect the expression of c-Src mRNA, and the most effective siRNA was chosen to be cloned into a plasmid. Two single-strand DNA templates were designed according to the most effective siRNA sequences. The short hairpin RNA (shRNA) plasmid targeting c-Src with pGPU6/green fluorescent protein (GFP)/Neo vector psiRNA-c-Src was constructed. Sequencing was performed to check whether the plasmid was constructed correctly. Panc-1 cells were transfected with psiRNA-c-Src and the negative control plasmid (psiRNA-N), respectively. Following selection with G418, the transfected monoclonal cells were chosen. GFP was evaluated by flow cytometry and fluorescence microscopy to estimate transfection efficiency. RQ-PCR and western blotting were used to detect c-Src silencing efficiency. To verify the effects of gemcitabine chemoresistance of c-Src expression, MTT assay was performed. ELISA was used to determine VEGF levels in culture supernatants. In a nude mouse model, tumor growth was studied, c-Src, VEGF expression and microvessel density in tumor tissue were measured by immunohistochemistry. The transfection efficiency of siRNA in the Panc-1 cell line was above 90%, the most effective siRNA could suppress expression of the c-Src gene with an inhibition efficiency of 86.1%. Sequencing confirmed that the c-Src siRNA plasmid was successfully constructed. MTT assay indicated that the effect of gemcitabine-induced cytotoxicity was markedly increased in the psiRNA-c-Src group (P<0.05). Meanwhile, the expression of VEGF in vitro was reduced significantly (P<0.05) in the psiRNA-c-Src group. In nude mice bearing tumors, c-Src, VEGF expression and MVD were decreased in tumors produced from psiRNA-c-Src transfected cells (P<0.05). In summary, the siRNA expression constructs targeting c-Src could specifically suppress c-Src expression, inhibit VEGF expression, inhibit cell proliferation and enhance gemcitabine chemosensitivity in vitro. C-Src gene silencingwas able to inhibit angiogenesis of tumors in vivo. These findings demonstrate that the c-Src targeting gene silencing approach has the potential to serve as a novel tool for pancreatic carcinoma treatment.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22200682
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"