JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A study of the suppressive effect on human pancreatic adenocarcinoma cell proliferation and angiogenesis by stable plasmid-based siRNA silencing of c-Src gene expression.

Oncology Reports 2012 March
The non-receptor protein tyrosine kinase c-Src regulates diverse biological processes by associating with multiple signaling and structural molecules. Overexpression of c-Src occurs in pancreatic cancer and can be predictive of poor prognosis. The aim of this study was to investigate the inhibitory effects of plasmid-based siRNAs targeting the human c-Src gene on proliferation and angiogenesis in the human pancreatic adenocarcinoma cell line Panc-1. Three siRNAs targeting the c-Src gene were transfected into the Panc-1 pancreatic adenocarcinoma cell line mediated by Lipofectamine. Transfection efficiency was assessed by flow cytometry. Real-time quantitative PCR (RQ-PCR) was employed to detect the expression of c-Src mRNA, and the most effective siRNA was chosen to be cloned into a plasmid. Two single-strand DNA templates were designed according to the most effective siRNA sequences. The short hairpin RNA (shRNA) plasmid targeting c-Src with pGPU6/green fluorescent protein (GFP)/Neo vector psiRNA-c-Src was constructed. Sequencing was performed to check whether the plasmid was constructed correctly. Panc-1 cells were transfected with psiRNA-c-Src and the negative control plasmid (psiRNA-N), respectively. Following selection with G418, the transfected monoclonal cells were chosen. GFP was evaluated by flow cytometry and fluorescence microscopy to estimate transfection efficiency. RQ-PCR and western blotting were used to detect c-Src silencing efficiency. To verify the effects of gemcitabine chemoresistance of c-Src expression, MTT assay was performed. ELISA was used to determine VEGF levels in culture supernatants. In a nude mouse model, tumor growth was studied, c-Src, VEGF expression and microvessel density in tumor tissue were measured by immunohistochemistry. The transfection efficiency of siRNA in the Panc-1 cell line was above 90%, the most effective siRNA could suppress expression of the c-Src gene with an inhibition efficiency of 86.1%. Sequencing confirmed that the c-Src siRNA plasmid was successfully constructed. MTT assay indicated that the effect of gemcitabine-induced cytotoxicity was markedly increased in the psiRNA-c-Src group (P<0.05). Meanwhile, the expression of VEGF in vitro was reduced significantly (P<0.05) in the psiRNA-c-Src group. In nude mice bearing tumors, c-Src, VEGF expression and MVD were decreased in tumors produced from psiRNA-c-Src transfected cells (P<0.05). In summary, the siRNA expression constructs targeting c-Src could specifically suppress c-Src expression, inhibit VEGF expression, inhibit cell proliferation and enhance gemcitabine chemosensitivity in vitro. C-Src gene silencingwas able to inhibit angiogenesis of tumors in vivo. These findings demonstrate that the c-Src targeting gene silencing approach has the potential to serve as a novel tool for pancreatic carcinoma treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app