JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

High-frequency pallidal stimulation eliminates tic-related neuronal activity in a nonhuman primate model of Tourette syndrome.

Neuroreport 2012 March 8
High-frequency deep brain stimulation targeting the output nucleus of the basal ganglia, the globus pallidus internus, has been suggested as a treatment modality for intractable Tourette syndrome and basal-ganglia-mediated motor tics. Recent studies on the modeling of motor tics induced by focal injections of bicuculline to the striatum, a putative model of Tourette syndrome, have shown that tics induce a widespread modulation within both segments of the globus pallidus. The purpose of this study was to investigate, using the bicuculline-induced Tourette syndrome model, whether and how high-frequency deep brain stimulation targeted to the globus pallidus internus could modulate tic-related activity in the pallidum. The perievent rate changes coinciding with tic expression under the on-stimulation and off-stimulation conditions were examined to determine the effect of high-frequency stimulation on pallidal activity. The results showed that the stimulation blocked tic-related phasic changes in the firing pattern of pallidal cells in parallel with a reduction of the peak amplitude of tic events in the electromyography record. This finding supports the premise that deep brain stimulation targeted to the globus pallidus internus could be a viable treatment option for Tourette syndrome, and the use of pallidal stimulation for motor tics warrants further study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app