JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Two-dimensional spectroscopy can distinguish between decoherence and dephasing of zero-quantum coherences.

Recent experiments on a variety of photosynthetic antenna systems have revealed that coherences among electronic states persist longer than previously anticipated. In an ensemble measurement, the observed dephasing of a coherent state can occur because of either disorder across the ensemble or decoherence from interactions with the bath. Distinguishing how much such disorder affects the experimentally observed dephasing rate is paramount for understanding the role that quantum coherence may play in energy transfer through these complexes. Here, we show that two-dimensional electronic spectra can distinguish between the limiting cases of homogeneous dephasing (decoherence) and inhomogeneous dephasing by examining how the quantum beat frequency changes within a cross peak. For the antenna complex LH2 isolated from Rhodobacter sphaeroides , we find that dephasing of the coherence between the B850 and B800 rings arises predominantly from inhomogeneity. In contrast, within the Fenna-Matthews-Olson (FMO) complex from Chlorobium tepidum , dephasing of the coherence between the first two excitons appears quite homogeneous. Thus, the observed dephasing rate sets an upper bound on decoherence for the LH2 complex while establishing both an upper and lower bound for the FMO complex.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app