Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Surface doping and band gap tunability in hydrogenated graphene.

ACS Nano 2012 January 25
We report the first observation of the n-type nature of hydrogenated graphene on SiO(2) and demonstrate the conversion of the majority carrier type from electrons to holes using surface doping. Density functional calculations indicate that the carrier type reversal is directly related to the magnitude of the hydrogenated graphene's work function relative to the substrate, which decreases when adsorbates such as water are present. Additionally, we show by temperature-dependent electronic transport measurements that hydrogenating graphene induces a band gap and that in the moderate temperature regime [220-375 K], the band gap has a maximum value at the charge neutrality point, is tunable with an electric field effect, and is higher for higher hydrogen coverage. The ability to control the majority charge carrier in hydrogenated graphene, in addition to opening a band gap, suggests potential for chemically modified graphene p-n junctions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app