Add like
Add dislike
Add to saved papers

Electron density fluctuations accelerate the branching of positive streamer discharges in air.

Branching is an essential element of streamer discharge dynamics. We review the current state of theoretical understanding and recall that branching requires a finite perturbation. We argue that, in current laboratory experiments in ambient or artificial air, these perturbations can only be inherited from the initial state, or they can be due to intrinsic electron-density fluctuations owing to the discreteness of electrons. We incorporate these electron-density fluctuations into fully three-dimensional simulations of a positive streamer in air at standard temperature and pressure. We derive a quantitative estimate for the ratio of branching length to streamer diameter that agrees within a factor of 2 with experimental measurements. As branching without this noise would occur considerably later, if at all, we conclude that the intrinsic stochastic particle noise triggers branching of positive streamers in air at atmospheric pressure.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app