Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70.

Molecular Cell 2012 January 14
Eukaryotic cells possess many transcriptionally regulated mechanisms to alleviate the nucleosome barrier. Dramatic changes to the chromatin structure of Drosophila melanogaster Hsp70 gene loci are dependent on the transcriptional activator, heat shock factor (HSF), and poly(ADP-ribose) polymerase (PARP). Here, we find that PARP is associated with the 5' end of Hsp70, and its enzymatic activity is rapidly induced by heat shock. This activation causes PARP to redistribute throughout Hsp70 loci and Poly(ADP-ribose) to concurrently accumulate in the wake of PARP's spread. HSF is necessary for both the activation of PARP's enzymatic activity and its redistribution. Upon heat shock, HSF triggers these PARP activities mechanistically by directing Tip60 acetylation of histone H2A lysine 5 at the 5' end of Hsp70, where inactive PARP resides before heat shock. This acetylation is critical for the activation and spread of PARP as well as for the rapid nucleosome loss over the Hsp70 loci.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app