Add like
Add dislike
Add to saved papers

Selective recognition and separation of nucleosides using carboxymethyl-β-cyclodextrin functionalized hybrid magnetic nanoparticles.

A novel magnetic nanoadsorbent (CMCD-APTS-MNPs) containing the superparamagnetic and molecular recognition properties was synthesized by grafting carboxymethyl-β-cyclodextrin (CM-β-CD) on 3-aminopropyltriethoxysile (APTS) modified Fe(3)O(4) nanoparticles. The feasibility of using CMCD-APTS-MNPs as magnetic nanoadsorbent for selective adsorption of adenosine (A) and guanosine (G) based on inclusion and molecular recognition was demonstrated. The as-synthesized magnetic nanoparticles were characterized by TEM, FTIR and TGA analyses. The effects of pH and initial nucleoside concentrations on the adsorption behavior were studied. The complexation of CMCD-APTS-MNPs with both nucleosides was found to follow the Langmuir adsorption isotherm. The CMCD-APTS-MNPs showed a higher adsorption ability and selectivity for G than A under identical experimental conditions, which results from the ability of selective binding and recognition of the immobilized CM-β-CD towards G. The driving force of the separation between G and A is through the different weak interaction with grafted CM-β-CD, i.e., hydrogen bond interaction, which is evidenced by different inclusion equilibrium constants and FTIR analyses of inclusion complexes between grafted cyclodextrin and the guest molecules. Our results indicated that this nanoadsorbent would be a promising tool for easy, fast and selective separation, analysis of nucleosides and nucleotides in biological samples.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app