The dual PI3K/mTOR inhibitor NVP-BGT226 induces cell cycle arrest and regulates Survivin gene expression in human pancreatic cancer cell lines
Wolfgang Glienke, Luise Maute, Johannes Wicht, Lothar Bergmann
Tumour Biology: the Journal of the International Society for Oncodevelopmental Biology and Medicine 2012, 33 (3): 757-65
22170433
The phosphatidylinositol-3-kinase (PI3K) pathway is one of the most commonly activated signaling pathways in pancreatic cancer and is a target of interest for new therapeutic approaches. NVP-BGT226 is a novel dual class PI3K/mammalian target of rapamycin (mTOR) inhibitor that has entered Phase I/II clinical trials. We analyzed the effect of NVP-BGT226 (10-100 nM) on the pancreatic cell lines Panc-1, BxPc-3, AsPC-1 and MiaPaCa-2 in regard to cell viability, induction of apoptosis, cell cycle, and expression of the antiapoptotic genes Survivin, MCL-1, BCL-2 and BCL-xL. Cell viability decreased within 24-72 h after exposure to about 50% compared to untreated control cells in a concentration- but not time-dependent manner. Cell cycle analysis revealed that NVP-BGT226 induced predominantly G0/G1 cell cycle arrest. Additionally, real-time RT-PCR and Western blot analysis showed a remarkable decrease of Survivin expression. Originally designed as a dual inhibitor, there was only a significant inhibition of p-mTOR. In summary, the dual PI3K/mTOR inhibitor NVP-BGT226 induces G0/G1 arrest and acts, at least, partially via downregulation of Survivin.
Full Text Links
Find Full Text Links for this Article
You are not logged in. Sign Up or Log In to join the discussion.