JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS.

Powdery mildew, caused by Blumeria graminis f. sp. tritici, is an important foliar disease of wheat worldwide. Wild emmer (Triticum turgidum var. dicoccoides) is a valuable genetic resource for improving disease resistance in common wheat. A powdery mildew resistance gene conferring resistance to B. graminis f. sp. tritici isolate E09 at the seedling and adult stages was identified in wild emmer accession IW170 introduced from Israel. An incomplete dominant gene, temporarily designated MlIW170, was responsible for the resistance. Through molecular marker and bulked segregant analyses of an F(2) population and F(3) families derived from a cross between susceptible durum wheat line 81086A and IW170, MlIW170 was located in the distal chromosome bin 2BS3-0.84-1.00 and flanked by SSR markers Xcfd238 and Xwmc243. MlIW170 co-segregated with Xcau516, an STS marker developed from RFLP marker Xwg516 that co-segregated with powdery mildew resistance gene Pm26 on 2BS. Four EST-STS markers, BE498358, BF201235, BQ160080, and BF146221, were integrated into the genetic linkage map of MlIW170. Three AFLP markers, XPaacMcac, XPagcMcta, XPaacMcag, and seven AFLP-derived SCAR markers, XcauG2, XcauG3, XcauG6, XcauG8, XcauG10, XcauG20, and XcauG25, were linked to MlIW170. XcauG3, a resistance gene analog (RGA)-like sequence, co-segregated with MlIW170. The non-glaucousness locus Iw1 was 18.77 cM distal to MlIW170. By comparative genomics of wheat-Brachypodium-rice genomic co-linearity, four EST-STS markers, CJ658408, CJ945509, BQ169830, CJ945085, and one STS marker XP2430, were developed and MlIW170 was mapped in an 2.69 cM interval that is co-linear with a 131 kb genomic region in Brachypodium and a 105 kb genomic region in rice. Four RGA-like sequences annotated in the orthologous Brachypodium genomic region could serve as chromosome landing target regions for map-based cloning of MlIW170.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app