JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Optical sensing with simultaneous electrochemical control in metal nanowire arrays.

Sensors 2010
This work explores the alternative use of noble metal nanowire systems in large-scale array configurations to exploit both the nanowires' conductive nature and localized surface plasmon resonance (LSPR). The first known nanowire-based system has been constructed, with which optical signals are influenced by the simultaneous application of electrochemical potentials. Optical characterization of nanowire arrays was performed by measuring the bulk refractive index sensitivity and the limit of detection. The formation of an electrical double layer was controlled in NaCl solutions to study the effect of local refractive index changes on the spectral response. Resonance peak shifts of over 4 nm, a bulk refractive index sensitivity up to 115 nm/RIU and a limit of detection as low as 4.5 × 10(-4) RIU were obtained for gold nanowire arrays. Simulations with the Multiple Multipole Program (MMP) confirm such bulk refractive index sensitivities. Initial experiments demonstrated successful optical biosensing using a novel form of particle-based nanowire arrays. In addition, the formation of an ionic layer (Stern-layer) upon applying an electrochemical potential was also monitored by the shift of the plasmon resonance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app