Add like
Add dislike
Add to saved papers

Epithelial-mesenchymal transition predicts sensitivity to the dual IGF-1R/IR inhibitor OSI-906 in hepatocellular carcinoma cell lines.

A growing body of data indicates that inhibiting the type 1 insulin-like growth factor receptor (IGF-1R) might be an effective treatment strategy for hepatocellular carcinoma (HCC). OSI-906 is a dual IGF-1R/IR kinase inhibitor currently in phase II clinical development for HCC. However, biomarkers are lacking to help identify patients with HCC who are more likely to benefit from OSI-906 treatment. We sought to determine the effect of OSI-906 on proliferation against a panel of 21 HCC cell lines and to investigate molecular determinants of responsiveness to OSI-906. We identified a subset of HCC cell lines that was sensitive to OSI-906, and sensitivity is associated with elevated phosphorylation levels of IGF-1R and IR and greater inhibition of AKT signaling. Dual targeting of both receptors seems to be important for maximal inhibition as treatment with a selective IGF-1R-neutralizing antibody was associated with increased IR signaling, whereas OSI-906 fully inhibited both phosphorylated IR and IGF-1R and resulted in greater inhibition of the IRS/AKT pathway. Epithelial-mesenchymal transition (EMT) seems to predict HCC cell sensitivity to OSI-906, as the epithelial phenotype is strongly associated with expression of IGF-2 and IR, activation of IGF-1R and IR, and sensitivity to OSI-906, alone or in combination with erlotinib. Induction of EMT upon treatment with TGFβ reduced sensitivity to OSI-906. Collectively, these data support the concept for dual IGF-1R/IR targeting in HCC, where EMT status and expressions of IGF-2 and IR may be used to identify those patients who are most likely to benefit from treatment with an IGF-1R/IR dual inhibitor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app