Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity.

Nanoscale 2012 January 22
Owing to their extensive practical applications and fundamental importance, the controllable synthesis of well-faceted anatase TiO(2) crystal with high percentage of reactive facets has attracted increasing attention. Here, nano-sized anatase TiO(2) sheets mainly dominated by {001} facets had been prepared on graphene sheets by using a facile solvothermal synthetic route. The percentage of {001} facets in TiO(2) nanosheets was calculated to be ca. 64%. The morphologies, structural properties, growth procedures and photocatalytic activities of the resultant TiO(2)/graphene nanocomposites were investigated. In comparison with commercial P25 and pure TiO(2) nanosheets, the composite exhibited significant improvement in photocatalytic degradation of the azo dye Rhodamine B under visible light irradiation. The enhancement of photocatalytic activity and stability was attributed to the effective charge anti-recombination of graphene and the high catalytic activity of {001} facets.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app