Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Inhibition of CaMKII phosphorylation of RyR2 prevents induction of atrial fibrillation in FKBP12.6 knockout mice.

Circulation Research 2012 Februrary 4
RATIONALE: Abnormal calcium release from sarcoplasmic reticulum (SR) is considered an important trigger of atrial fibrillation (AF). Whereas increased Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activity has been proposed to contribute to SR leak and AF induction, downstream targets of CaMKII remain controversial.

OBJECTIVE: To test the hypothesis that inhibition of CaMKII-phosphorylated type-2 ryanodine receptors (RyR2) prevents AF initiation in FKBP12.6-deficient (-/-) mice.

METHODS AND RESULTS: Mice lacking RyR2-stabilizing subunit FKBP12.6 had a higher incidence of spontaneous and pacing-induced AF compared with wild-type mice. Atrial myocytes from FKBP12.6-/- mice exhibited spontaneous Ca(2+) waves (SCaWs) leading to Na(+)/Ca(2+)-exchanger activation and delayed afterdepolarizations (DADs). Mutation S2814A in RyR2, which inhibits CaMKII phosphorylation, reduced Ca(2+) spark frequency, SR Ca(2+) leak, and DADs in atrial myocytes from FKBP12.6-/-:S2814A mice compared with FKBP12.6-/- mice. Moreover, FKBP12.6-/-:S2814A mice exhibited a reduced susceptibility to inducible AF, whereas FKBP12.6-/-:S2808A mice were not protected from AF.

CONCLUSIONS: FKBP12.6 mice exhibit AF caused by SR Ca(2+) leak, Na(+)/Ca(2+)-exchanger activation, and DADs, which promote triggered activity. Genetic inhibition of RyR2-S2814 phosphorylation prevents AF induction in FKBP12.6-/- mice by suppressing SR Ca(2+) leak and DADs. These results suggest suppression of RyR2-S2814 phosphorylation as a potential anti-AF therapeutic target.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app