Comparative Study
Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Task-dependent changes of motor cortical network excitability during precision grip compared to isolated finger contraction.

The purpose of this study was to determine whether task-dependent differences in corticospinal pathway excitability occur in going from isolated contractions of the index finger to its coordinated activity with the thumb. Focal transcranial magnetic stimulation (TMS) was used to measure input-output (I/O) curves--a measure of corticospinal pathway excitability--of the contralateral first dorsal interosseus (FDI) muscle in 21 healthy subjects performing two isometric motor tasks: index abduction and precision grip. The level of FDI electromyographic (EMG) activity was kept constant across tasks. The amplitude of the FDI motor evoked potentials (MEPs) and the duration of FDI silent period (SP) were plotted against TMS stimulus intensity and fitted, respectively, to a Boltzmann sigmoidal function. The plateau level of the FDI MEP amplitude I/O curve increased by an average of 40% during the precision grip compared with index abduction. Likewise, the steepness of the curve, as measured by the value of the maximum slope, increased by nearly 70%. By contrast, all I/O curve parameters [plateau, stimulus intensity required to obtain 50% of maximum response (S(50)), and slope] of SP duration were similar between the two tasks. Short- and long-latency intracortical inhibitions (SICI and LICI, respectively) were also measured in each task. Both measures of inhibition decreased during precision grip compared with the isolated contraction. The results demonstrate that the motor cortical circuits controlling index and thumb muscles become functionally coupled when the muscles are used synergistically and this may be due, at least in part, to a decrease of intracortical inhibition and an increase of recurrent excitation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app