Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Identification of hypoxic-responsive proteins in cucumber roots using a proteomic approach.

To elaborate the mechanisms of response of cucumber (Cucumis sativus L. cv.) seedlings to hypoxic stress, plants were grown under either normoxic conditions or hypoxic stress. As expected, plant biomass was significantly reduced under hypoxic stress. Proteomic profiles of cucumber roots were studied at 72 h after treatment; 316 and 425 protein spots were detected on polyacrylamide gels from normoxic and hypoxic-treated plants, respectively. Compared with normoxic-treated plants, protein abundance of 22 proteins was significantly upregulated while protein abundance of 12 proteins decreased in the hypoxic-treated plants. Twenty one of the proteins whose abundance was altered were identified by MALDI-TOF/TOF MS analysis, and categorized into classes corresponding to energy and metabolism proteins, transcription factor proteins, defense stress proteins, structural proteins and regulatory proteins. Under hypoxic stress, glycolysis was induced; energy was channeled to primary metabolism, while secondary pathways and nitrogen metabolism pathways were inhibited. Cucumber plants scavenged reactive oxygen species by antioxidase, and increased Acyl-[acyl-carrier-protein] desaturase which defend against reactive oxygen species damage to plant cell structure. This study provides insight that may facilitate a better understanding of the response mechanisms of cucumber plant to hypoxic stress.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app