JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Whole-body distribution and radiation dosimetry of (68)Ga-NOTA-RGD, a positron emission tomography agent for angiogenesis imaging.

(68)Ga labeled NOTA-RGD was a recently developed positron emission tomography (PET) radiotracer for the visualization of angiogenesis, and is regarded as a promising imaging agent for cancer and several other disorders. In this study, we investigated the whole-body distribution and radiation dosimetry of (68)Ga-NOTA-RGD in humans. Ten cancer patients (53.7 ± 13.5 years; 61.5 ± 7.4  kg) participated in this study. PET scans were performed using a PET/computed tomography (scanner in three-dimensional mode). After an intravenous injection of 172.4 ± 20.5  MBq of (68)Ga-NOTA-RGD, eight serial whole-body scans were performed during 90 minutes. Volumes of interest were drawn manually over the entire volumes of the urinary bladder, the gallbladder, heart, kidneys, liver, lungs, pancreas, spleen, and stomach. Time-activity curves were obtained from serial PET scan data. Residence times were calculated from areas under curve of time-activity curves and used as input to the OLINDA/EXM 1.1 software. The uptake of (68)Ga-NOTA-RGD was highest in the kidneys and urinary bladder. Radiation doses to kidneys and urinary bladder were 71.6 ± 28.4  μ Gy/MBq and 239.6 ± 56.6  μ Gy/MBq. Mean effective doses were 25.0 ± 4.4  μ Sv/MBq using International Commission of Radiation Protection (ICRP) publication 60 and 22.4 ± 3.8  μ Sv/MBq using ICRP publication 103 weighting factor. We evaluated the radiation dosimetry of (68)Ga labeled NOTA-RGD, which has an acceptable effective radiation dose.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app