Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Entropy analysis of tri-axial leg acceleration signal waveforms for measurement of decrease of physiological variability in human gait.

Disease-related and senescent decrease of physiological variability in biological time-series outputs (e.g., heart rate) has drawn increasing attention as a potential new type of biomarker. In this paradigm, measurement of variability in periodic motion may enable quantitative evaluation of functional limitation in people with musculoskeletal disorders. A novel technique to measure variability of leg motion patterns during level walking was used to study 52 adults with symptomatic knee osteoarthritis (OA), and 57 asymptomatic control subjects over a wide range of age (20-79 years). The hypothesis was that cycle-to-cycle variability in leg motion patterns, indexed by tri-axial acceleration signal entropy, would be lower in those with greater age or with knee symptoms. Leg motions were assessed using portable inertial monitors attached bilaterally just above each ankle. The tri-axial acceleration data were analyzed using a nonlinear variability measurement tool designated as Sample Entropy (SampEn). SampEn data for asymptomatic subjects exhibited a significant negative correlation (r = -0.287, p = 0.0306) with greater age. OA subjects had significantly lower SampEn values (p = 0.0002) than did age-matched asymptomatic subjects who walked at equivalent velocity. This approach holds promise as a basis for valid, inexpensive, and convenient objective evaluation of limitations in human gait function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app