CASE REPORTS
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Severe short stature caused by novel compound heterozygous mutations of the insulin-like growth factor 1 receptor (IGF1R).

CONTEXT: IGF-I, essential for normal human growth in utero and postnatally, mediates its effects through the IGF-I receptor (IGF1R). More than nine heterozygous mutations, including one compound heterozygous mutation, of the IGF1R gene have been reported in patients with varying degrees of intrauterine and postnatal growth retardation.

OBJECTIVE: The objective of the study was the analysis of the IGF1R gene in a short-statured patient.

PATIENT: The male patient, with a height of -5.91 sd score (aged 20.3 yr), had consistently elevated circulating serum concentrations of IGF-I. A diagnosis of antibody-negative insulin-requiring diabetes was made at age 14 yr. His deceased sister was also severely short statured (-3.75 sd score).

RESULTS: The patient and his sister carried novel, compound heterozygous IGF1R missense mutations, E121K (exon 2) and E234K (exon 3), inherited from the mother and father, respectively. In vitro reconstitution studies demonstrated that neither the E121K nor E234K mutation affected IGF1R prepeptide expression, but levels of the proteolytically cleaved α- and β-subunit were consistently low. As a consequence, each IGF1R variant exhibited significantly reduced IGF-I-induced signal transduction. Correlating to these studies, expression of functional IGF1R and the IGF-I-induced activation of the IGF1R pathway were markedly reduced in the primary dermal fibroblasts established from the patient.

CONCLUSIONS: Only the second compound heterozygous IGF1R mutations to be identified, the p.E121K/E234K variant is the cause of intrauterine growth retardation and the most severe postnatal growth failure described to date in a patient with IGF1R defects. Whether the mutant IGF1R also contributes to the diabetic phenotype, however, remains to be determined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app