Add like
Add dislike
Add to saved papers

Pharmacokinetic/pharmacodynamic modeling of crizotinib for anaplastic lymphoma kinase inhibition and antitumor efficacy in human tumor xenograft mouse models.

Crizotinib [Xalkori; PF02341066; (R)-3-[1-(2,6-dichloro-3-fluoro-phenyl)-ethoxy]-5-(1-piperidin-4-yl-1H-pyrazol-4-yl)-pyridin-2-ylamine] is an orally available dual inhibitor of anaplastic lymphoma kinase (ALK) and hepatocyte growth factor receptor. The objectives of the present studies were to characterize: 1) the pharmacokinetic/pharmacodynamic relationship of crizotinib plasma concentrations to the inhibition of ALK phosphorylation in tumors, and 2) the relationship of ALK inhibition to antitumor efficacy in human tumor xenograft models. Crizotinib was orally administered to athymic nu/nu mice implanted with H3122 non-small-cell lung carcinomas or severe combined immunodeficient/beige mice implanted with Karpas299 anaplastic large-cell lymphomas. Plasma concentration-time courses of crizotinib were adequately described by a one-compartment pharmacokinetic model. A pharmacodynamic link model reasonably fit the time courses of ALK inhibition in both H3122 and Karpas299 models with EC(50) values of 233 and 666 ng/ml, respectively. A tumor growth inhibition model also reasonably fit the time course of individual tumor growth curves with EC(50) values of 255 and 875 ng/ml, respectively. Thus, the EC(50) for ALK inhibition approximately corresponded to the EC(50) for tumor growth inhibition in both xenograft models, suggesting that >50% ALK inhibition would be required for significant antitumor efficacy (>50%). Furthermore, based on the observed clinical pharmacokinetic data coupled with the pharmacodynamic parameters obtained from the present nonclinical xenograft mouse model, >70% ALK inhibition was projected in patients with non-small-cell lung cancer who were administered the clinically recommended dosage of crizotinib, twice-daily doses of 250 mg (500 mg/day). The result suggests that crizotinib could sufficiently inhibit ALK phosphorylation for significant antitumor efficacy in patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app