TGF-β1 regulates differentiation of bone marrow mesenchymal stem cells

Longmei Zhao, Basil M Hantash
Vitamins and Hormones 2011, 87: 127-41
Mesenchymal stromal/stem cells (MSCs) are a small population of stromal cells present in most adult connective tissues, such as bone marrow, fat tissue, and umbilical cord blood. MSCs are maintained in a relative state of quiescence in vivo but, in response to a variety of physiological and pathological stimuli, are capable of proliferating then differentiating into osteoblasts, chondrocytes, adipocytes, or other mesoderm-type lineages like smooth muscle cells (SMCs) and cardiomyocytes. Multiple signaling networks orchestrate MSCs differentiating into functional mesenchymal lineages. Among these, transforming growth factor-β1 (TGF-β1) has emerged as a key player. Hence, we summarize the effects of TGF-β1 on differentiation of MSCs toward different lineages. TGF-β1 can induce either chondrogenic or SMC differentiation of MSCs in vitro. However, it requires cell-cell and cell-matrix interactions, similar to development of these tissues in vivo. The effect of TGF-β1-regulated osteogenic differentiation of MSCs in vitro depends on the specific culture conditions involved. TGF-β1 inhibits adipogenic differentiation of MSCs in monolayer culture. Using this information, we may optimize the culture conditions to differentiate MSCs into desired lineages.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"