Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

MicroRNA-195 promotes apoptosis in mouse podocytes via enhanced caspase activity driven by BCL2 insufficiency.

BACKGROUND: The apoptosis of podocytes is a characteristic event in diabetic nephropathy. The aim of this study was to investigate whether microRNAs (miRNAs) affect podocyte apoptosis in diabetic circumstances.

METHODS: Diabetic nephropathy was induced in DBA/2 mice by intraperitoneal injections of streptozotocin, and the levels of proteinuria were measured with ELISA. Apoptosis-related miRNAs were screened in isolated glomeruli. A conditionally immortalized mouse podocyte cell line was cultured in 25 mMD-glucose and either transfected with miRNA-195 (miR-195) mimics or inhibitors. The levels of BCL2 and caspase expression were determined using real-time RT-PCR and Western blot analysis, respectively. We also measured WT-1 and synaptopodin in podocytes. Apoptosis of podocytes was assessed with Hoechst 33258 nuclear staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and flow cytometry.

RESULTS: The expression of miR-195 was elevated in both diabetic mice with proteinuria and podocytes that were cultured in high glucose. Transfection with miR-195 reduced the protein levels of BCL2 and contributed to podocyte apoptosis via an increase in caspase-3. miR-195-treated podocytes underwent actin rearrangement and failed to synthesize sufficient levels of WT-1 and synaptopodin proteins, which suggests that the cells had suffered injuries similar to those observed in diabetic nephropathy in both humans and animal models.

CONCLUSIONS: Taken together, our findings demonstrate that miR-195 promotes apoptosis of podocytes under high-glucose conditions via enhanced caspase cascades for BCL2 insufficiency. This work thus presents a meaningful approach for deciphering mechanisms, by which miRNAs participate in diabetic renal injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app