Induction and selection of Sox17-expressing endoderm cells generated from murine embryonic stem cells

Insa S Schroeder, Sabine Sulzbacher, Tobias Nolden, Joerg Fuchs, Judith Czarnota, Ronny Meisterfeld, Heinz Himmelbauer, Anna M Wobus
Cells, Tissues, Organs 2012, 195 (6): 507-23
Embryonic stem (ES) cells offer a valuable source for generating insulin-producing cells. However, current differentiation protocols often result in heterogeneous cell populations of various developmental stages. Here we show the activin A-induced differentiation of mouse ES cells carrying a homologous dsRed-IRES-puromycin knock-in within the Sox17 locus into the endoderm lineage. Sox17-expressing cells were selected by fluorescence-assisted cell sorting (FACS) and characterized at the transcript and protein level. Treatment of ES cells with high concentrations of activin A for 10 days resulted in up to 19% Sox17-positive cells selected by FACS. Isolated Sox17-positive cells were characterized by defini- tive endoderm-specific Sox17/Cxcr4/Foxa2 transcripts, but lacked pluripotency-associated Oct4 mRNA and protein. The Sox17-expressing cells showed downregulation of extraembryonic endoderm (Sox7, Afp, Sdf1)-, mesoderm (Foxf1, Meox1)- and ectoderm (Pax6, NeuroD6)-specific transcripts. The presence of Hnf4α, Hes1 and Pdx1 mRNA demonstrated the expression of primitive gut/foregut cell-specific markers. Ngn3, Nkx6.1 and Nkx2.2 transcripts in Sox17-positive cells were determined as properties of pancreatic endocrine progenitors. Immunocytochemistry of activin A-induced Sox17-positive embryoid bodies revealed coexpression of Cxcr4 and Foxa2. Moreover, the histochemical demonstration of E-cadherin-, Cxcr4-, Sox9-, Hnf1β- and Ngn3-positive epithelial-like structures underlined the potential of Sox17-positive cells to further differentiate into the pancreatic lineage. By reducing the heterogeneity of the ES cell progeny, Sox17-expressing cells are a suitable model to evaluate the effects of growth and differentiation factors and of culture conditions to delineate the differentiation process for the generation of pancreatic cells in vitro.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"