JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Oxygen reduction reactions on pure and nitrogen-doped graphene: a first-principles modeling.

Nanoscale 2012 January 22
Based on first principles density functional theory calculations we explored energetics of oxygen reduction reaction over pristine and nitrogen-doped graphene with different amounts of nitrogen doping. The process of oxygen reduction requires one more step than the same reaction catalyzed by metals. Results of calculations evidence that for the case of light doped graphene (about 4% of nitrogen) the energy barrier for each step is lower than for the same process on a Pt surface. In contrast to the catalysis on a metal surface the maximal coverage of doped graphene is lower and depends on the corrugation of graphene. Changes of the energy barriers caused by oxygen load and corrugation are also discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app