JOURNAL ARTICLE

Basis set convergence of the coupled-cluster correction, δ(MP2)(CCSD(T)): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases

Michael S Marshall, Lori A Burns, C David Sherrill
Journal of Chemical Physics 2011 November 21, 135 (19): 194102
22112061
In benchmark-quality studies of non-covalent interactions, it is common to estimate interaction energies at the complete basis set (CBS) coupled-cluster through perturbative triples [CCSD(T)] level of theory by adding to CBS second-order perturbation theory (MP2) a "coupled-cluster correction," δ(MP2)(CCSD(T)), evaluated in a modest basis set. This work illustrates that commonly used basis sets such as 6-31G*(0.25) can yield large, even wrongly signed, errors for δ(MP2)(CCSD(T)) that vary significantly by binding motif. Double-ζ basis sets show more reliable results when used with explicitly correlated methods to form a δ(MP2-F12)(CCSD(T(*))-F12) correction, yielding a mean absolute deviation of 0.11 kcal mol(-1) for the S22 test set. Examining the coupled-cluster correction for basis sets up to sextuple-ζ in quality reveals that δ(MP2)(CCSD(T)) converges monotonically only beyond a turning point at triple-ζ or quadruple-ζ quality. In consequence, CBS extrapolation of δ(MP2)(CCSD(T)) corrections before the turning point, generally CBS (aug-cc-pVDZ,aug-cc-pVTZ), are found to be unreliable and often inferior to aug-cc-pVTZ alone, especially for hydrogen-bonding systems. Using the findings of this paper, we revise some recent benchmarks for non-covalent interactions, namely the S22, NBC10, HBC6, and HSG test sets. The maximum differences in the revised benchmarks are 0.080, 0.060, 0.257, and 0.102 kcal mol(-1), respectively.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
22112061
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"