Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Status of genomic imprinting in epigenetically distinct pluripotent stem cells.

Stem Cells 2012 Februrary
Mouse epiblast stem cells (EpiSCs) derived from postimplantation embryos are developmentally and functionally different from embryonic stem cells (ESCs) generated from blastocysts. EpiSCs require Activin A and FGF2 signaling for self-renewal, similar to human ESCs (hESCs), while mouse ESCs require LIF and BMP4. Unlike ESCs, EpiSCs have undergone X-inactivation, similar to the tendency of hESCs. The shared self-renewal and X-inactivation properties of EpiSCs and hESCs suggest that they have an epigenetic state distinct from ESCs. This hypothesis predicts that EpiSCs would have monoallelic expression of most imprinted genes, like that observed in hESCs. Here, we confirm this prediction. By contrast, we find that mouse induced pluripotent stem cells (iPSCs) tend to lose imprinting similar to mouse ESCs. These findings reveal that iPSCs have an epigenetic status associated with their pluripotent state rather than their developmental origin. Our results also reinforce the view that hESCs and EpiSCs are in vitro counterparts, sharing an epigenetic status distinct from ESCs and iPSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app